# Term Project Drawing Standards

## **General Instructions**

Within this document are the SE 3 drawing standards for the Final Term Project Construction Drawings to be compiled by each team. You are required to follow all instructions and standards listed. Please ask the SE 3 Teaching Team for any clarifications or questions about what is expected.

**Disclaimer** Please note that the examples shown throughout this document are from past student projects and *may not 100% represent the requirements for this Term Project*. However, they are all visually appealing and have many good qualities that represent the general expectations.

The complete drawing set should include a consistent look and feel between the drawings created by AutoCAD and SolidWorks. The drawing set has specific sheet requirements, which are outlined below. It is up to each team to decide the best way to organize their drawings in order to convey their Assembly clearly.

The Drawing set includes two main components: 1) Solidworks Construction Drawings, which show all of the necessary information that a builder needs to construct the various parts of the assembly, and 2) AutoCAD Experimental Test Setup Plan View and Elevations, which demonstrate how the team's assembly fits into the test track with creative background elements.

## **General Drawing Guidelines**

- ✓ All Solidworks drawings shall be compiled on **sheet size A** and use **ANSI standards**.
- ✓ AutoCAD drawings shall be compiled on either sheet size A or C (designated within this document) and use English standards.

- ✓ Use the provided title block for Solidworks and AutoCAD drawings (there are two templates provided). Teams need to fill in all appropriate information in the title block and make sure it is not only consistent between sheets, but consistent between software programs as well.
- ✓ Title Page, General Note Sheet (including legends, symbols, table of contents), and Layout and Elevations are to be created in AutoCAD (more instructions within this document).
- ✔ Construction Drawings, including views (plans, elevations, 3D representations), sections, and detail sheets are to be created in Solidworks (more instructions within this document).
- ✓ Title page may be in color if desired, but all other pages should be printed to PDF in grayscale.
- ✓ Use the **Representative Fraction** notation (1:2, 1:5, etc.) for denoting scale (do not use Architectural or Engineering scale)

## **Sheet Numbering**

#### **General Instructions**

- All Final Drawings must follow this given sheet numbering format
- Sheets must be compiled in alphabetical and numerical order
- Sheet number is always located in the bottom right hand corner of the sheet

**Discipline Designator** – One or two alphabetical characters that identifies the sheet as a member of a subset

Sheet Type Designator - One numerical character

**Sheet Sequence Number** – Two numerical characters. Start at 01.

#### **Discipline Designator**

| G  | General (provided by SE 3 Teaching Team) |  |  |  |
|----|------------------------------------------|--|--|--|
| Α  | Conference - Valor                       |  |  |  |
| AA | Team 1                                   |  |  |  |
| AB | Team 2                                   |  |  |  |
| AC | Team 3                                   |  |  |  |
| AD | Team 4                                   |  |  |  |
| AE | Team 5                                   |  |  |  |
| AF | Team 6                                   |  |  |  |
| AG | Team 7                                   |  |  |  |
| AH | Team 8                                   |  |  |  |
| AI | Team 9                                   |  |  |  |
| AJ | Team 10                                  |  |  |  |

#### Sheet ID Name Format

**A A N N N** 

Discipline Designator

| AA | N N | Ν |
|----|-----|---|
|----|-----|---|

Sheet Type Designator



Sheet Sequence Number

A = alphabetical characterN = numerical character

| AK | Team 11               |
|----|-----------------------|
| AL | Team 12               |
| AM | Team 13               |
| AN | Team 14               |
| AO | Team 15               |
| AP | Team 16               |
| AQ | Team 17               |
| AR | Team 18               |
| AS | Team 19               |
| В  | Conference - Mystic   |
| BA | Team 1                |
| BB | Team 2                |
| BC | Team 3                |
| BD | Team 4                |
| BE | Team 5                |
| BF | Team 6                |
| BG | Team 7                |
| BH | Team 8                |
| BI | Team 9                |
| BJ | Team 10               |
| BK | Team 11               |
| BL | Team 12               |
| BM | Team 13               |
| BN | Team 14               |
| С  | Conference - Instinct |
| CA | Team 1                |
| СВ | Team 2                |
| CC | Team 3                |
| CD | Team 4                |
| CE | Team 5                |
| CF | Team 6                |
| CG | Team 7                |
| СН | Team 8                |
| CI | Team 9                |
| Cl | Team 10               |
| СК | Team 11               |
| CL | Team 12               |
| СМ | Team 13               |
| CN | Team 14               |

(G) General – Will be used by the SE 3 Teaching Team for additional pages to complete the class drawing set. Each team should only use the Discipline Designator for their Assembly for the entire set of drawings.

| Sheet 7 | <b>V</b> pe | Desi | ignator |
|---------|-------------|------|---------|
| 0       |             |      | 0.10.00 |

| Number | Description                                                               |
|--------|---------------------------------------------------------------------------|
| 0      | General Notes Sheet (AutoCAD) & Summary Sheet [includes the Sheet Index   |
|        | and Total Assembly Bill of Materials] (Solidworks)                        |
| 1      | Build Schematic - plan, elevations, & isometric (Solidworks)              |
| 2      | Subassembly – includes exploded views, subassembly BoM, etc. (Solidworks) |
| 3      | Subassembly – includes exploded views, subassembly BoM, etc. (Solidworks) |
| 4      | Subassembly – includes exploded views, subassembly BoM, etc. (Solidworks) |
| 5      | Subassembly – includes exploded views, subassembly BoM, etc. (Solidworks) |
| 6      | Placements (Solidworks)                                                   |
| 7      | Custom Parts (Solidworks)                                                 |
| 8      | Plan View of Experimental Test Setup (AutoCAD)                            |
| 9      | Elevation View(s) of Experimental Test Setup (AutoCAD)                    |

#### **Sheet Sequence Number**

The sheet sequence number should always start at 01 and subsequently increase.

Sometimes it is valuable to group sheets within a single sheet type designator, either for clarity or in case more sheets are added and would be confusing out of order. These are typically spaced at increments of 10. Let's say you started numbering all your subassemblies as 201 202 203 204 205 and then realized you wanted to add a page between 203 and 204. You can't go and renumber everything. So instead you separate all of your subassemblies into different sheet designator which will allow you to add another page to your first one without renumbering.

#### For example:

Suppose you want to create a 2<sup>nd</sup> subassembly, you would use sheet type designator "300". You could number your three pages that represent the subassembly and BOM using "301", "302" and "303". That way, if later you decide that you want to add details to the first subassembly (section "200") as a separate sheet, you can go back and call it "202" (or whatever is next in the series) and it will still be grouped in order without going back to renumber all the sheets when adding pages.

#### You never want to renumber the sheets.

Additionally, if you have more than 4 subassemblies in your project ("200" through "500") you can add more subassemblies on the "20" increment or "50". For example, if you have 8 subassemblies, you could use 200, 250, 300, 350, 400, 450, 500, 550. This keeps them spaced apart so you can still add pages to the subassemblies without renumbering the whole set.

| Sheet Number | Sheet Title           |  |  |
|--------------|-----------------------|--|--|
| AA001        | General Notes Sheet   |  |  |
| AA002        | Summary Sheet         |  |  |
| AA101        | Build Schematic Sheet |  |  |
| AA201        | Main Subassembly      |  |  |

#### Example Table of Contents (Sheet Index) for Conference Valor - Team 1:

| AA202 | Main Subassembly                                     |
|-------|------------------------------------------------------|
| AA301 | Auxiliary Subassembly                                |
| AA302 | Auxiliary Subassembly                                |
| AA401 | Support Assembly A                                   |
| AA501 | Support Assembly B                                   |
| AA601 | Placements                                           |
| AA651 | Support Placements                                   |
| AA652 | Support Placements                                   |
| AA701 | Custom Parts                                         |
| AA801 | Experimental Test Setup Plan View                    |
| AA901 | Experimental Test Setup Front Elevation View         |
| AA911 | Experimental Test Setup Left Elevation View          |
| AA921 | Experimental Test Setup Right or Back Elevation View |

## Title Block

Title blocks should be included on all sheets except for the title sheet, use the templates provided. Information presented in the title blocks should look consistent from sheet to sheet no matter what software was used to create the drawing. Title blocks should include the following:

- SE 3 course number and term project title "Final Term Project Construction and Experimental Test Setup Drawings"
- Team Number (optional: Team Name/Company Name/Logo)
- Conference Name
- Sheet Title
- Sheet Size
- Sheet Number
- Scale (Either listed or noted to see details)
- Units (Either listed or noted to see details)
- Drawn By (Name & Date)
- Checked By (Name & Date)

## PHASE 1

## Solidworks Construction Drawings

All sheets that contain different views to aid in the construction of the Assembly shall be done in Solidworks. This applies to all views within sheet type designator numbers 0 through 7.

Drawings shall include all necessary dimensions, callouts, and views that allow the Assembly to be replicated. Do not be repetitive or excessive.

All views and tables should be properly labeled with appropriate headers and detail numbers.

Clarifications to aid in the compilation of these drawings:

- All parts used need to be listed by official name and part number (use the online catalog) in any Bill of Materials list.
- String is not required to be modeled in Solidworks (as it can be very difficult) but must be noted, drawn in, and/or added in a bill or materials where appropriate so the viewer can clearly understand how those parts are utilized and the quantity of string to use.

### Summary Sheet (Sheet Type Designator 0)

Following the General Notes Sheet (done in AutoCAD), include a Summary Sheet which contains the following:

- 1) Sheet Index Table (i.e. table of contents)
- 2) Total Assembly Bill of Materials
  - a. This lists every Fischertechnik library part, provided connectors, and team custom parts used
  - b. For any modifications to the provided Fischertechnik parts or connectors, create your own part number using 4 digits
  - c. For custom parts, create your own part number using 3 digits
  - d. Must have a part number, description, and quantity column as shown in the example below. **BoM CANNOT be manually edited, all data must be properly filled out in the part and referenced correctly in Solidworks.**
- 3) A mini isometric image of your assembly

You may break this into 2 pages if you cannot fit the Sheet Index and Bill of Materials on the same page.

#### Example:Part

| SHEET  | HEET INDEX                        |                           | TOTAL ASSEMBLY                           |                                                  | Jaccos School<br>PROPRIETARY AND CO<br>THE INFORMATION CON<br>DRAWING IS THE SOLE<br>UC SANDIGO AND REPORT | of Engineeri<br>ONFIDENTIAL<br>IANED IN THIS<br>ROPERTY OF<br>OUCCION IN PA |
|--------|-----------------------------------|---------------------------|------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| NUMBER | SHEET TITLE                       | DADTNO                    |                                          | OR AS A WHOLE WITHOU<br>PERMISSION OF UC SAN DIE | THE WRITTEN                                                                                                |                                                                             |
| S.00   | Title Sheet                       | PART NO. DESCRIPTION QTY. |                                          |                                                  | DO NOT SCALE E                                                                                             | RAWING                                                                      |
| S.10   | Build Schematic                   | 36921                     | Girder 60                                | 5                                                | UNO DIMENSIONS                                                                                             | ARE IN MM                                                                   |
| S.20   | Main Tower<br>Subassembly         | 38240                     | Building Block V15 Corner                | 14                                               |                                                                                                            | tion                                                                        |
| S.30   | Auxiliary Tower<br>Subassembly    | 32850                     | Building Block 15x15                     | 5                                                | 2 2                                                                                                        | nica.                                                                       |
| S.40   | Support Subassembly A             | 33047                     | Building Block 15x50x5 Will Gloove       | 5                                                | e ro                                                                                                       | mu<br>ers                                                                   |
| S.50   | Support Subassembly B             | 36950                     | Girder 15 With 2 Pins                    | 3                                                |                                                                                                            | om                                                                          |
| S.60   | Support Subassembly C             | 36922                     | Girder 15                                | 4                                                | S and                                                                                                      | ngii                                                                        |
| S.70   | Start Ramp Support<br>Subassembly | 36293                     | Girder 120                               | 1                                                | I Ro<br>vsse                                                                                               | phico<br>for E                                                              |
| 00.2   | End Ramp Support                  | 37238                     | Building Block 5 with 2 pins             | 2                                                | Ti ≽g                                                                                                      | db                                                                          |
| 3.00   | Subassembly                       | 38428                     | Building Plate 15x30x5 With 3<br>Grooves | 3                                                |                                                                                                            | E 3 C                                                                       |
| S.90   | Tower Placement                   | 37237                     | Building Block 5                         | 2                                                | j j j                                                                                                      | S                                                                           |
| S.91   | Support Placement                 | 31982                     | Spring Cam                               | 1                                                | DIECT                                                                                                      | URSE                                                                        |
| \$ 0.2 | Elevible Bail Diacoment           | 31981                     | Angular Block 15                         | 3                                                | PRC                                                                                                        | 00                                                                          |
| 3.72   | Flexible Kall Flacement           | 151715                    | 90 Curve                                 | 1                                                | PART NUMBER                                                                                                | K005                                                                        |
|        |                                   | 37468                     | Building Block 7,5                       | 1                                                | DESIGNED BY                                                                                                | DATE                                                                        |
|        |                                   | 38244                     | Mounting Plate 15x75                     | 1                                                | -Tessica Tuazou                                                                                            | 4/9/2018                                                                    |
|        |                                   | 155901                    | Flexible Rail Profile 90mm, Green        | 4                                                | CHECKED BY                                                                                                 |                                                                             |
|        |                                   | 143234                    | Flexible Rail Profile 180mm, Green       | 1                                                | APPROVED BY                                                                                                |                                                                             |
|        |                                   | 32985                     | Base Plate 258x186                       | 1                                                | REV QTY: 1                                                                                                 |                                                                             |
|        |                                   | 0                         |                                          | ]                                                | 0 SCALE:                                                                                                   | 1:5<br>OF 12                                                                |
|        |                                   |                           |                                          |                                                  | SIZE DWG. N                                                                                                | .00                                                                         |
|        | 5 4                               | h.,                       | 3 2                                      |                                                  | 1                                                                                                          |                                                                             |

### Build Schematic (Sheet Type Designator 1)

Following the Summary Sheet, include a Build Schematic sheet which contains the following:

- 1) A plan view of your assembly
- 2) An isometric view of your assembly (3<sup>rd</sup> angle view)
- 3) A front and side (you can choose left or right) elevation of your assembly
- 4) On the elevation views, you must indicate your subassemblies with a leader arrow, state the name of the subassembly, and the page number where it can be found. Use the designation "X/AAYYY" where "AAYYY" is the page (per the sheet numbering provided) and "X" is the detail number on that page (see the subassembly section for more information)



### Subassemblies (Sheet Type Designator 2 - 5)

These sections are for your various subassemblies within the main assembly. These are the pages that will show someone how to put together the subassembly so they must be **clear**.

Each subassembly page must include:

- 1) At least one elevation view and 1 isometric view
  - a. Some subassemblies may require more views to show all the parts
- 2) At least 1 exploded view, showing the audience how to put together the subassembly
- 3) One or more views need to include bubbles that link to a BoM table that shows which parts are included in this subassembly
- 4) Include notes as necessary to clarify how pieces are put together, including any leader lines or drawing lines

If you need more than one page, make sure you add a note saying which page to find the BoM if the bubbles are shown on a different page (otherwise they are referencing nothing).

Example:





### Placements (Sheet Type Designator 6)

This section shows the audience how all the subassemblies come together for the final assembly. It must clearly show how to put this kit together and be buildable. You may have multiple pages that accomplish this. Include any number of elevations, isometric images, exploded views, etc. that complete the task. Be sure to properly label the subassemblies so the audience can follow, in addition to including notes and dimensions where appropriate.





### Custom Parts (Sheet Type Designator 7)

Provide a plan view, at least one elevation view, and one isometric view for your custom parts (should be two per team member). Include dimensions that provide an overall understanding of the size of your part(s).



## PHASE 2

## AutoCAD Experimental Test Setup Plan View and Elevation Drawings

All sheets that contain different views to aid in showing the overall Experimental Test Setup shall be done in AutoCAD. This applies to all views within sheet type designator numbers 8 through 9.

Drawings shall include all necessary dimensions, callouts, and views that allow the Experimental Test Setup to be understood. Do not be repetitive or excessive.

Experimental Test Setup Plan View and Elevations are required to clearly demonstrate the team's creativity and skills in AutoCAD.

## Experimental Test Setup Plan and Elevation View Drawings (Sheet Type Designator 8 & 9)

Refer to the Term Project Guidelines for requirements of this section. It is repeated below for reference:

- 1) Each team will create their own elevation view and plan views of the experimental test setup that includes custom creative backgrounds and other decorative components
  - a. One team member will do the plan view, and each remaining team member will do one of the other elevation views (Front, Right, Left, or Back).
  - b. Be creative to add interesting backgrounds from the various views. You can place your experimental setup in the desert, the beach, the mountains, the city, etc.., and add interesting components to create your custom background
    - i. Your scenery MUST include the End Zones and the rest of the test set up
  - c. Create your own layers that make sense for the project. Be clear and organized. Do not put everything in the view onto only 1 or 2 layers.
- 2) In EACH of your AutoCAD drawings, each view must include a minimum of:
  - a. 3 images from the internet that are pulled in as blocks (such as people, trees, etc.)
  - b. 1 complex item that is traced from an internet image
  - c. 1 complex item that is drawn by hand
  - d. Screen video recordings of ALL of these are required so the teaching team can see that these instructions were followed for each student.
  - e. Additionally, label each item with a leader arrow and note that indicates which method was used to create or place it

#### Video Recordings:

Each member of the team will create a folder in their GrabCAD team workspace to upload the videos indicated in Step 2 (a through c) above. Since one team member is working on their own view (plan or elevation), the minimum requirements per view must be completed by each team member separately.

The videos required are screen recordings (you can use zoom to do this) that show the teaching team how each student followed instructions to draw or place items using the methods indicated in a through c (3 blocks, 1 complex traced image, and 1 hand drawn image). These recordings do not require heavy editing or formal compilation but must show and explain enough of the work that proves you have accomplished the task following the required method. Also, we do not want 60 min videos. They should be short snippets throughout your drawing effort to show the process so some minimal editing to string these together may be required.

#### Example:





## PHASE 3

## Title Sheet

Title sheet should be created in AutoCAD on **sheet size A** and include the following:

- SE 3 course number and term project title "SE 3 Pokémon Challenge Term Project"
- Team Number (optional: Team Name/Company Name/Logo)
- Conference Name
- Date
- A single isometric view of the Assembly (a Solidworks image file imported into AutoCAD)
- The title "Final Drawings for the XXX Assembly", where XXX is the name of your project
- List of team member names

Title sheet should NOT include the following:

- Title block
- Multiple views or photos of the Assembly
- Legends or symbols table
- General project notes
- Table of Contents





## **General Notes Sheet**

General Notes Sheet shall be created in AutoCAD on **sheet size A** and include the following:

- Page number is "XX001" where "XX" is the appropriate Disciple Designator
- Any legends or symbols tables needed
- A section called Sheet Type Designator that summarizes your numbering sequence.
- A written section titled "Project Learned Results"
  - As a numbered list, describe the various concepts, techniques, applications, etc. that you learned while doing this term project (individually and/or as a team)
  - Keep each numbered item concise
  - Must have at least 10 items that show in-depth understanding of the course (i.e. do not write "We learned AutoCAD", "We learned SolidWorks". A better example would be, "We learned how to effectively design parts in SolidWorks that were able to be 3D printed, using techniques such as \_\_\_\_.")
- A written section titled "Project Challenges"
  - As a numbered list, describe the various challenges that you faced during the course of this project
  - Keep each numbered item concise

• Must have at least 5 items that show-in depth understanding and specific details (i.e. do not write "The project was challenging", etc.)

#### Example:

|                                        |      |                        | J OF C                                  |
|----------------------------------------|------|------------------------|-----------------------------------------|
| SHEET TYPE DESIGNATIONS                | PF   | ROJECT LEARNED RESULTS | ALL |
| NUMBER DESCRIPTION                     |      |                        |                                         |
| 0 GENERAL                              | 1)   |                        |                                         |
| 1 PLANS                                |      |                        |                                         |
| 2 ELEVATIONS                           | 2)   |                        |                                         |
| 3 SUBASSEMBLIES / MECHANISMS           |      |                        | 1.15                                    |
| 4 LARGE SCALE VIEWS                    | 3)   |                        | ST TO                                   |
| 5 3D PRINT DETAILS                     |      |                        | IN DIED                                 |
| 6 ACRYLIC DETAILS                      | 4)   |                        |                                         |
| 9 CONSTRUCTION PROCESSES               |      |                        | SE3- RUBE GOLDBERG COMPETITION          |
| TABLE OF CONTENTS                      | 5)   |                        |                                         |
| CD 001 - GENERAL NOTES                 |      |                        | CONFERENCE                              |
| CD 011 - ISOMETRIC VIEW                | 6)   |                        |                                         |
| CD 012 - EXPLODED VIEW                 | "    |                        | RUBE CUBE 43                            |
| CD 101 - PLAN VIEW                     |      |                        | DRAWN: RYAN SITAR 6/8/17                |
| CD 201 - ELEVATIONS                    | 7)   |                        | CHECKED: GRAHAM MARTIN 6/8/17           |
| CD 301 - ACRYLIC BALL RAMP             | 1 81 |                        | APPROVED BY: SCOTT SPROUSE 6/8/17       |
| CD 302 - BALL RAMP POSITIONS           | "    |                        | DIMENSIONS ARE IN INCHES                |
| CD 311 - HAMMER SUBASSEMBLY            | 9)   |                        | TOLERANCES:                             |
| CD 321 - BIRD STARTER SUBASSEMBLY      |      |                        | FRACTIONAL +/- 1                        |
| CD 331 - WHIRLY BIRD                   | 10   |                        | 32                                      |
| CD 341 - DOMINO STAIRS                 |      |                        |                                         |
| CD 351 - FINAL SPINNER ASSEMBLY        |      |                        |                                         |
| CD 401 - HAMMER MAIN BODY              |      | PROJECT CHALLENGES     |                                         |
| CD 402 - BIRD STARTER SPINNER          |      |                        |                                         |
|                                        | 1)   |                        | MATERIAL: NA                            |
| CD 501 - BASE OF BALL RAMP DETAIL      |      |                        | FINISH : NONE                           |
| CD 502 - BALL GUIDE DETAIL             | 2)   |                        | COMMENTS:                               |
| CD 503 - BUCKET DETAIL                 |      |                        |                                         |
| CD 504 - BIRD STARTER COLUMN DETAIL    |      |                        |                                         |
| CD 505 - DOMINO WITH HOLE DETAIL       |      |                        |                                         |
| _CD 506 - LOCKING MECHANISM DETAIL     |      |                        | SHEET TITLE:                            |
| CD 601 - HAMMER SUPPORT DETAILS        |      |                        |                                         |
| CD 602 - HAMMER MAIN BODY DETAILS      |      |                        | GENERAL DETAILS                         |
|                                        |      |                        |                                         |
| CD 901 - # ACRYLIC SHEET CONSTRUCTION  | 5)   |                        |                                         |
| CD 902 - 16 ACRYLIC SHEET CONSTRUCTION |      |                        |                                         |
| CD 911 - CONSTRUCTION PROCEDURE        |      |                        | SCALE: NA                               |

## **Complete Drawing Set Submission**

At the end of Phase 3, teams will submit a complete drawing set in PDF form. It must be in the following order (matching the page numbers):

- Title Page (AutoCAD, phase 3)
- General Notes Sheet (AutoCAD phase 3)
- Summary Sheet (Solidworks phase 1)
- Build Schematic (Solidworks phase 1)
- Subassembly sheets (Solidworks phase 1)
- Placements (Solidworks phase 1)
- Custom Parts (Solidworks phase 1)
- Experimental Test Setup Plan View (AutoCAD phase 2)
- Experimental Test Setup Elevation View(s) (AutoCAD phase 2)